Conference Paper : Physically Interpretable Probabilistic Domain Characterization
This paper is the result of the work done during the Trail Summer Workshop 2024 in Lisbon.
We show how to use machine learning to define the domain of operation of an autonomous car in terms of weather parameters from camera images by predicting complete probability distributions instead of single values.
📄Read More Here :
Halin, A., Piérard, S., Vandeghen, R., Gérin, B., Zanella, M., Colot, M., ... & Van Droogenbroeck, M.
Physically Interpretable Probabilistic Domain Characterization.
In Proceedings of the Asian Conference on Computer Vision (pp. 15–33), 2024: https://openaccess.thecvf.com/content/ACCV2024W/AWSS/html/Halin_Physically_Interpretable_Probabilistic_Domain_Characterization_ACCVW_2024_paper.html
Halin, A., Piérard, S., Vandeghen, R., Gérin, B., Zanella, M., Colot, M., ... & Van Droogenbroeck, M.
Physically Interpretable Probabilistic Domain Characterization.
In Proceedings of the Asian Conference on Computer Vision (pp. 15–33), 2024: https://openaccess.thecvf.com/content/ACCV2024W/AWSS/html/Halin_Physically_Interpretable_Probabilistic_Domain_Characterization_ACCVW_2024_paper.html